Все металлы и сплавы имеют свой уникальный состав и характеристики, но всех их объединяет общая проблема — коррозия. Этот процесс приводит к разрушению структуры металла и изменению его геометрии, что ведет к утрате прочности и портит внешний вид металлических изделий. Разрушительное воздействие на металл ускоряется в присутствии таких катализаторов как вода, кислород и химически активные растворы. Все виды коррозии и ее последствия подробно описаны в ГОСТ 5272-68. Антикоррозийная обработка — это метод защиты, при которой на поверхность металлических деталей наносится тонкий слой другого металла, сплавов или неметаллических материалов для придания антикоррозийных свойств. Это особенно важно, если металл эксплуатируется в условиях высокой влажности и химически агрессивных средах.
Лужение медных шин (оловянирование)
Медные луженые шины применяются преимущественно при изготовлении оборудования повышенной надежности, эксплуатация которого предусмотрена в тяжелых климатических условиях, в агрессивных промышленных средах, в условиях повышенной влажности и воздействия морского воздуха. Медные луженые шины можно соединять с алюминиевыми проводниками без дополнительных элементов соединения.
Лужение – это нанесение тонного слоя олова или его сплава на поверхность металлического изделия. Специалисты этот слой называют полудой. Рассмотрим технологии оловянирования (лужения) медных шин и преимущества луженых шин перед обычными медными шинами.
Основные способы лужения (оловянирования)
Существуют три метода нанесения защитного покрытия:
Горячее лужение считается классическим способом, поскольку именно с него начиналось развитие технологии. В зависимости от условий выполнения работ защитный слой может быть нанесен двумя методами:
Горячий способ лужения отличается своей простотой. Для выполнения работ не нужно приобретать специального инструмента или обладать профессиональными знаниями. Основной недостаток – неравномерное покрытие заготовки. Это справедливо как для погружения, так и для растирания. Особенно ярко он проявляется при обработке деталей со сложной криволинейной поверхностью. Кроме того, данный способ особенно требователен к чистоте рабочего сплава. Чужеродные элементы, попадающие в рабочую смесь, удалить практически невозможно.
Химическое лужение или контактное осаждение применяется при производстве печатных плат. Процесс является контактным и основан на осаждении олова из раствора его комплексной соли за счет разности потенциалов, возникающей между медью и оловом. Толщина получаемого покрытия около 1 мкм. При этом не требуется контролировать время нанесения покрытия. Детали загружаются в раствор с помощью корзинок из латунной сетки. В процессе покрытия необходимо детали встряхивать. Раствор химического оловянирования является раствором разового действия, 1 л раствора рассчитан на покрытие поверхности в 5 дм2. Скорость осаждения олова снижается по мере перекрытия медной основы, пока процесс не прекратиться полностью. Толщина осадка определяется составом раствора и режимом процесса и должна быть практически одинаковой на всех участках, контактирующих с раствором. Недостатком контактного метода нанесения оловянного покрытия является малая толщина покрытия. Нанесение оловянного покрытия на медные проводники печатных схем дает возможность производить пайку некоррозионными флюсами, а также повысить качество плат за счет устранения перегрева при пайке.
Гальваническое лужение – современный способ нанесения покрытия, когда в ходе протекания электрохимической реакции, ионы меди на поверхности замещаются ионами олова из оловосодержащего раствора. Только электрохимический способ позволяет получить покрытие заданной толщины практически на любом металле.
Гальванические покрытия требовательны к подготовке поверхностей. Перед началом работ требуется провести тщательную очистку и обезжиривание деталей. Качество подготовки поверхности детали к лужению определяет прочность ее сцепления с покрытием. Для оловянирования медных деталей и шин применяется травление подогретым 20-30% раствором серной кислоты. Продолжительность травления 20-30 мин. Затем поверхность изделий промывается холодной водой, протирается влажным песком, промывается горячей водой с температурой 80-100 °С.
Раствор при гальванической обработке может иметь щелочную или кислотную основу. Щелочные электролиты используют для оловянирования меди, других цветных металлов и их сплавов, имеющих сложную конфигурацию. Они имеют высокую рассеивающую способность, покрытие характеризуется мелкокристаллической структурой. Осаждение олова происходит медленно и необходимо, чтобы электролит имел температуру не меньше 70°С.
Детали больших размеров находятся в объемных ваннах в подвешенном состоянии. На более мелкие изделия гальваническое покрытие наносится в барабанных емкостях, где отрицательный заряд подается на барабан, который вращается в электролите. Для обработки деталей очень маленького размера (метизы, крепежные элементы) используются колокольные наливные ванны. В процессе работы они вращаются с низкой скоростью, в результате чего детали равномерно покрываются защитным покрытием.
Независимо от типа электролита катализатором процесса является электрический ток, который активизирует рабочий процесс. К положительным сторонам электрохимического метода оловянирования относят:
Единственный недостаток гальванического лужения – высокая себестоимость, поскольку рабочий процесс сопровождается большим расходом энергии, а для контроля необходимо постоянное присутствие специалиста высокой квалификации. Лужение с использованием электролита связано со сложностью приготовления раствора. В ходе процесса должен вестись постоянный контроль концентрации щелочи или кислоты в электролите, а также состояния анодов и поверхности ванны.
НТЦ ЭНЕРГО-РЕСУРС производит гальваническим способом шины медные луженые твердые ШМТЛ из шины медной твердой ШМТ (М1т) и мягкие ШММЛ из шины медной мягкой ШММ (М1М) в гальванических ванных длиной 2 метра и 4 метра.
Коррозионная стойкость шины медной луженой
Оловянное покрытие на медной токоведущей (заземляющей) шине является анодным (или протекторным) т.е. электрохимический потенциал олова отрицательнее, чем меди. Это означает, что в коррозионно-активной среде в первую очередь будет разрушаться олово и только после полного растворения олова на определенном участке будет повреждаться медь. Само по себе олово является достаточно стойким к коррозии металлом, поэтому применение оловянного покрытия на медной шине значительно увеличивает срок службы такой шины. Для увеличения коррозионной стойкости оловянного покрытия на медной шине покрытие осаждается из электролита с блескообразователями и может легироваться висмутом (т.е. осаждается сплав олово-висмут). Оловянное покрытие (особенно блестящее) безпористое начиная с толщины 6 мкм.
Электропроводность луженой медной шины
Несмотря на то, что олово хуже проводит электричество, чем чистая медь, оно уверенно занимает второе место после меди, если не считать покрытия драгоценными металлами, что очень дорого.
Уплотнение контактов на луженой медной шине
Интересным свойством покрытия оловом в контактных отверстиях на токоведущих (заземляющих) шинах является свойство уплотнителя. Олово — мягкий пластичный металл, который легко может уплотнять как резьбовые, так и нерезьбовые контакты. Уплотненные контакты, соответственно, более надежны, а сопротивление в них — ниже.
Сплавы, применяемые для оловянирования/лужения медных шин
Сплавы Sn-Pb (олово-свинец) с содержанием олова 10…60% применяются в электронной, радиотехнической и приборостроительной промышленности. Они хорошо паяются и сохраняют способность к пайке, в отличие от оловянных покрытий, в течение длительного времени. Способность к пайке и длительность сохранения этого свойства повышается при оплавлении. Сплавы Sn-Pb — мягкие, пластичные. Они менее склонны к образованию игл. При образовании гальванических пар они катодны по отношению к железу и анодны по отношению к меди.
Покрытия сплавом Sn-Pb наносят на медную шину непосредственно. Они могут быть использованы для всех условий эксплуатации, включая ОЖ — очень жесткие. (Защитные покрытия по условиям эксплуатации делят на группы легкие — Л средние — С жесткие — Ж очень жесткие — ОЖ. Эти покрытия классифицируют по способу получения, материалу, физико-химическим и декоративным свойствам. Технология нанесения покрытий и методы контроля их качества приведены в ГОСТ 16976—71. ) Сплавы Sn — Pb с содержанием 5…11% олова применяются как антифрикционные в условиях сухого и полусухого трения. Толщина слоя для условий Л (легкие) — 6…9 мкм, для условий С и Ж (средние и жесткие)- 18…20 мкм.
Сплавы Sn-Bi (олово-висмут) с содержанием висмута 0,5…2,0% применяются в электронной, радиотехнической и приборостроительной промышленности. Сплав хорошо паяется и длительное время сохраняет способность к пайке. Сплав Sn-Bi менее склонен к образованию игл чем олово.
Достоинства оловянного покрытия (олово-висмут) медных шин:
Недостатки оловянного покрытия (олово-висмут) на меди, латуни, бронзе:
Никелирование — процесс нанесения тонкого слоя металлического никеля на изделие для придания ему необходимых свойств. Покрытия широко применяются в качестве подслоя при покрытии драгоценными металлами, а также для улучшения электропроводности, повышения твердости, защиты в щелочных средах и придания высокодекоративного внешнего вида. Никель — серебристо-белый металл с сильным блеском. Атомная масса никеля 58,69 г/моль, плотность 8,9 г/см3. Имеет электрохимический эквивалент 1,095 г/(А*ч), его стандартный потенциал равен -0,25 В. Никелевые покрытия легко пассивируются на воздухе и под действием сильных окислителей. Благодаря этому покрытие обладает высокой коррозионной стойкостью. При толщине покрытия 125 мкм основной металл уже предохранен от воздействия промышленных газов и растворов. В менее агрессивных средах достаточно 50-100 мкм. Никель полностью устойчив в щелочах и органических кислотах окислительного характера.
Никелирование металла используется для того, чтобы улучшить исходные физические характеристики основного металлического сплава:
Основные технологии никелирования
Гальваническое покрытие никелем заключается в осаждении его на поверхности металлической детали под воздействием электрического тока. Для гальванического никелирования изделий к поверхности изделия подключается отрицательный контакт через источник питания. После, аналогичным образом, соединяется с положительным контактом никелевые аноды. После этого, изделие погружают в электролит. Этот раствор состоит из воды и соли хлорида никеля. Благодаря электрическому току, присутствующему в электролите, соль хлорида никеля распадается на отрицательные ионы хлора и положительные катионы никеля. Отрицательный заряд изделия затем притягивает положительные ионы никеля, в то время как положительный заряд никелевого анода привлекает отрицательные хлорид-анионы. В результате этой химической реакции никель в аноде окисляется и растворяется в растворе. Отсюда окисленный никель притягивается к основному материалу и впоследствии покрывает изделие.
Достоинства электрохимического метода:
Недостатки электролитического метода:
Этапы электролитического никелирования различных металлов
Химический метод никелирования — по сравнению с гальваническим, химический метод никелирования является более трудоемким и дорогим, поэтому не так распространен. Основные его преимущества – однородность и неограниченная толщина конечного покрытия. Помимо высокой цены, недостатки у технологии такие же как у гальванического метода нанесения покрытий из никеля, связанные с ограничениями по размеру изделий.
Этапы химического никелирования
Подслой никеля под защитные покрытия
Подслой никеля создает благоприятные условия работы покрытий на трение, предотвращает диффузию основного металла при температурах до 350°C, способствует стабильности контактного сопротивления.
Нанесение подслоя никеля перед электролитическим оловянированием замедляет иглообразование и улучшает паяемость оловянных осадков.
В качества материала для изготовления электрических контактов чаще всего используется медь и ее сплавы, а в качестве покрытия используется серебро. Медь и серебро образуют твердые растворы, что облегчает взаимную диффузию этих металлов. При работе контактной пары это может привести к существенному изменению характеристик контакта и даже к полному исчезновению верхнего слоя серебра с поверхности детали. Кроме того, ухудшение характеристик электрических контактов связано с проникновением продуктов коррозии основы (при нанесении на медную основу, например, оксидов меди) через поры серебра на поверхность контактирующих изделий.
В отличие от меди никель не образует с серебром твердых растворов, что уменьшает возможность взаимной диффузии. При нанесении серебра не по меди, а по промежуточному подслою никеля постоянство значений переходного сопротивления во влажной атмосфере может обеспечиваться более тонким и, соответственно, более пористым слоем серебра. Кроме того, многослойное покрытие позволяет сократить или уменьшить число сквозных пор покрытия, доходящих до поверхности покрываемых изделий, при уменьшении толщины верхнего слоя драгоценного серебра. Именно этот слой должен обеспечивать низкое значение переходного сопротивления при контактировании и сохранение его во времени.
Применение подслоя никеля при осаждении серебра на алюминиевые детали позволяет избежать возможность отслаивания покрытия и повысить прочность сцепления с поверхностью алюминия.
Серебрение является одним из основных гальванических процессов. Это связано с тем, что из всей группы благородных металлов серебро обладает наибольшей тепло и электропроводимостью, полируемостью и отражательной способностью. Сочетание этих качеств обуславливает большое распространение процесса серебрения в технологических процессах покрытия конактных групп и технологических деталей. При гальванике металл подготавливают механически, химически, наносятся подслойные покрытия, серебрение наносят последним, часто с использованием предварительного серебрения. После покрытия детали тщательно промываются и просушиваются. Технология подходит для обработки любых контактов в электронике. Толщина серебрения зависит от силы тока и времени выдержки изделий в ванне.
Покрытия серебром являются катодными по отношению ко всем конструкционным материалам и не защищают их поверхность в условиях электрохимической коррозии. Серебро отличается устойчивостью к щелочным растворам и большинству органических кислот, концентрированная серная кислота может растворять металл только при кипячении, а соляная при значительном нагревании. Серебро неустойчиво в растворах аммиака. Серебро быстро тускнеет в промышленной атмосфере в присутствии одновременно сернистых соединений, кислорода и влаги, покрываясь пленкой сульфидов коричневого и темно-серого цвета. Особенно активно в этом отношении гальванически осажденное серебро. Серебро может тускнеть в присутствии органических серосодержащих материалов (резины, пластмассы, компауиды, герметизирующие материалы), если длительное время будет находиться вместе с ними в непроветриваемом помещении.
В промышленности серебрение применяется:
К негативным особенностям серебряных покрытий можно отнести:
Особенно следует рассмотреть вопрос переходного сопротивления электроконтактов с серебряным покрытием. Как упоминалось ранее, на серебряных покрытиях может образовываться сульфидная пленка. Эта пленка обладает ионной и фотоэлектрической проводимостью. Т.е. чем больше она освещена, тем меньшее ее сопротивление. Такая особенность электропроводимости сульфидов серебра приводит к серьезной нестабильности переходного сопротивления посеребренных электроконтактов в условиях эксплуатации. Если же на контакт приложена малая контактная нагрузка и через него пропускается низкий ток, то проводимость контакта может нарушиться полностью.
По теме
Шины медные твердые луженые ШМТЛ
Шины медные мягкие луженые ШММЛ