Что такое электротехническая медь

Характеристики меди, обычной и электротехнической

Чистая медь по электрической проводимости занимает следующее место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводников — проводов и шин.

Медь – металл, имеющий уникальное сочетание различных свойств: превосходная устойчивость к коррозии, высокая степень пластичности, привлекательные цвет и фактура, высокая теплопроводность и хорошая электропроводимость. После очистки от примесей медь приобретает розоватый на изломе цвет, становится мягкой и ковкой. Удаление примесей значительно повышает тепло- и электропроводность, поэтому большая часть всей произведённой меди идёт на изготовление электротехнических изделий.

Чистая медь — ковкий и мягкий металл, достаточно тяжелый, отличный проводник тепла и электричества, легко подвергается обработке давлением. Именно эти качества позволяют применять изделия из меди в электротехнике. Более 70% всей производимой меди идет на электротехнические изделия. Кабели, электротехнические шины, обмотки трансформаторов и другие электротехнические изделия изготавливаются из разных сортов меди.

В большинстве случаев для электротехнических нужд используется так называемая технически чистая медь, содержащая около 0,02-0,04% кислорода, но для изделий, требующих максимальной электропроводности, применяют особую, «бескислородную» медь.

Основные характеристики меди:

  • Вес удельный, равный 8,93 г/cм3;
  • Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м);
  • Электрическое сопротивление, удельное при 20оС, равное 0,0167 Ом х мм2/м;
  • Температура плавления, равная 1083оС.

Различные электротехнические изделия: жилы кабели и провода, электротехнические шины и трансформаторные обмотки изготавливают из различных сортов меди.

Способы получения электротехнической меди

Электротехническая медь – чрезвычайно чистый металл, так как любая примесь резко снижает электропроводность.

  • Так, всего лишь 0,02% примеси алюминия, хотя он тоже проводник, приведёт к снижению проводимости на 9-10%, а что сказать о примесях, которые вообще не являются проводниками, поэтому здесь технологический брак просто недопустим.
  • при наличии 0,1% фосфора сопротивление увеличивается на 55%, следовательно проводимость уменьшается, как величина обратная сопротивлению;
  • если в меди будет висмут или свинец в количестве более 0,001%, то это вызывает красноломкость (растрескивание при горячей обработке давлением);
  • кислород в меди затрудняет пайку и увеличивает удельное сопротивление. Чтобы этого избежать вводят присадку фосфора;
  • водород — образует микротрещины и повышает ломкость.

Если присутствует несколько примесей, то бывают ситуации, что они взаимодействуют и их влияние увеличивается в разы.

Для использования меди для передачи электричества наличие примесей оказывает только негативный эффект.

Чтобы получить достаточно чистую электротехническую медь применяют метод, называемый электрорафинированием, основанным на электролизе. Создаются условия, при которых примеси отделяются от молекул меди, оседающих на одном из электродов, благодаря чему на выходе получается электролитическая медь при чистоте 99,999%, необходимой для электротехнических нужд.

Ещё одна важная сфера – производство сплавов на основе или с добавлением меди. Примечательно, что довольно мягкая медь со многими другими металлами образует не мягкие, но твёрдые сплавы – растворы, в которых атомы разных металлов распределены относительно равномерно.

Добавляя в красную медь, продукт огневого рафинирования, небольшое количество мышьяка, значительно повышают её прочность, но ухудшают возможность её сварки.

Сплавы меди, применяемые в электротехнике

Латуни — Сплавы меди с цинком, широко используются в электротехнике. Латуни используют для пружинящих контактов, штепсельных разъемов.

В различных марках латуни содержание цинка может доходить до 43%. Латуни, содержащие до 39% цинка, имеют однофазную структуру твердого раствора и называются a-латунями. Эти латуни обладают наибольшей пластичностью, поэтому из них изготавливают детали горячей или холодной прокаткой и волочением: листы, ленты, проволоку. Без нагрева из листовой латуни методом глубокой вытяжки и штамповкой можно изготовить детали сложной конфигурации.

Латуни с содержанием цинка свыше 39% называют a+b-латунями или двухфазными и применяют главным образом для фасонных отливок.

Двухфазные латуни являются более твердыми и хрупкими и обрабатываются давлением только в горячем состоянии.

Присадка к латуням олова, никеля и марганца повышает механические свойства и антикоррозионную устойчивость, а добавки алюминия в композиции с железом, никелем и марганцем сообщают латуням кроме улучшения механических свойств и коррозионной стойкости высокую твердость. Однако присутствие в латунях алюминия затрудняет пайку, а проведение пайки мягкими припоями становится практически невозможным.

· латуни марок Л68 и Л63 вследствие высокой пластичности хорошо штампуются и допускают гибку, легко паяются всеми видами припоев. В электромашиностроении широко применяются для различных токоведущих частей;

· латуни марок ЛС59-1 и ЛМЦ58-2 применяются для изготовления роторных (беличьих) клеток электрических двигателей и для токоведущих деталей, изготовленных резанием и штамповкой в горячем состоянии; хорошо паяются различными припоями;

· латунь ЛА67-2,5 применяется для литых токоведущих деталей повышенной механической прочности и твердости, не требующих пайки мягкими припоями;

· латуни ЛК80-3Л и ЛС59-1Л широко применяются для литых токоведущих деталей электрической аппаратуры, для щеткодержателей и для заливки роторов асинхронных двигателей. Хорошо воспринимают пайку различными припоями.

Бронзы проводниковые — относятся к медным сплавам, необходимость применения которых в основном вызвана недостаточной в ряде случаев механической прочностью и термической устойчивостью чистой меди.сплавы меди с оловом, алюминием, кремнием, свинцом. Общая номенклатура бронз весьма обширна, но высокой электропроводностью обладают лишь немногие марки бронз.

· кадмиевая бронза относится к наиболее распространенным проводниковым бронзам. Из числа всех марок кадмиевая бронза обладает наивысшей электрической проводимостью. Вследствие повышенного сопротивления истиранию и более высокой нагревостойкости эта бронза широко применяется для изготовления троллейных проводов и коллекторных пластин;

· бериллиевая бронза относится к сплавам, приобретающим прочность в результате старения. Она обладает высокими упругими свойствами, устойчивыми при нагревании до 250 °C, и электрической проводимостью в 2—2,5 раза большей, чем проводимость других марок бронз общего назначения. Эта бронза нашла широкое применение для изготовления различных пружинных деталей, выполняющих одновременно и роль проводника тока, например: токоведущие пружины, отдельные виды щеткодержателей, скользящие контакты в различных приборах, штепсельные разъемы и т.п.;

· фосфористая бронза обладает высокой прочностью и хорошими пружинными свойствами, из-за малой электропроводности применяется для изготовления пружинных деталей с низкими плотностями тока.

Литые токоведущие детали изготовляются из различных марок машиностроительных литьевых бронз с проводимостью в пределах 8—15% проводимости чистой меди. Характерной особенностью бронз является малая усадка по сравнению с чугуном и сталью и высокие литейные свойства, поэтому они применяются для отливки различных токоведущих деталей сложной конфигурации, предназначенных для электрических машин и аппаратов.

Все марки литьевых бронз можно подразделить на оловянные и безоловянные, где основными легирующими элементами являются Al, Mn, Fe, Pb, Ni.

Манганин — сплав меди с добавкой марганца и никеля. Применяется для изготовления добавочных резисторов и шунтов в измерительной технике.

Маркировка меди

Марки меди состоят из буквы “М”, что значит медь. Далее следует цифра от 0 до 4. Иногда затем встречается одна из букв, которые характеризуют способ получения металла: к — катодный, р — раскисленная с низким остаточным фосфором, ф — раскисленная с высоким остаточным фосфором, б — бескислородная. Бескислородная это М0, а раскисленная — М1.

Основные марки меди:

  • М0. Самый высокий класс медных сплавов, содержащий порядка 99,93-99,99% меди. Иногда для повышения физико-химических свойств в состав добавляется серебро и процент содержания основного элемента указывается как медь+серебро в качестве единого основного компонента. М0 – это наиболее чистый медный сплав, который применяется для изготовления токопроводящей продукции (силовых кабелей, проводников в электронике, бытовых проводов и так далее).
  • М1. Более распространенный в современных условиях сплав. Он также используется для изготовления электротехнической продукции с менее строгими требованиями к качеству. Также М1 используется для производства металлопрокатных изделий, сварочных электродов, проволоки и так далее. Процент содержания меди в М1 составляет 99,9%.
  • М2. Данная марка получила широкое применение на производстве продукции, требующей обработки высоким давлением. М2 – это менее пластичный металл, поскольку в его составе присутствует 99,7% меди. Часто сплав применяется для изготовления деталей криогенной техники.
  • М3. Марка относится к сплавам с наименьшим содержанием меди (99,5%). Такие металлы содержат большое количество примесей и часто получаются в результате вторичной переработки медной продукции. Применяется сплав М3 для изготовления деталей методом проката.

Отдельные модификации характеризуют тип и количество дополнительных элементов. Подробные сведения о марках прописаны в ГОСТ 859-2001. ГОСТ 434-78 регламентирует свойства меди, из которой выпускаются медные шины отечественными предприятиями.

Полезные детали

Технология производства медных шин одинакова на всех предприятиях, однако потребителя больше интересует величина цены при одинаковом качестве. Российские предприятия-лидеры соревнуются не в качестве (оно у них одинаково высокое), а в ценовой политике.

Для достижения определённых условий работы токоведущих элементов часто применяются новаторские подходы и решения:

  • Коллекторная полоса – сплав меди и серебра, превосходящий чистую медь по всем эксплуатационным характеристикам.
  • Электротехнические прямоугольные профили специального назначения:
  • полутвёрдые шины;
  • твердые шины с повышенной чистотой поверхности;
  • шины с закруглением малых сторон сечения и другие.

Благодаря такому закруглению достигается стойкость изоляционного покрытия (нет резких изгибов на углах), существенно экономится медь без потери проводимости, да и распределение токовой нагрузки более равномерно по всему сечению шины.

— Шины, имеющие повышенную чистоту поверхности для электролитического покрытия места последующего контакта серебром. Так достигается значительное уменьшение величины сопротивления контакта.

По теме

Коррозионные свойства меди

Лужение, никелирование и серебрение медных шин и деталей

Шины электротехнические, классификация, ГОСТы

Активные (омические) и индуктивные сопротивления шин прямоугольного сечения из алюминия и меди

Ленты медные и алюминиевые, марки, нормативы

Плетенка. Марки и материалы. Шины медные плетеные ШМП

X